Product Description

Stanford Microdevices' SSW-408 is a high performance Gallium Arsenide Field Effect Transistor MMIC switch housed in a low-cost surface mountable small outline plastic package.

This single-pole, double-throw reflective switch consumes less than 50 uA and can operate with positive or negative 3 V to 8 V supply voltages, making it suitable for use in both infrastructure and subscriber equipment. This switch can be used in all analog and digital wireless communication systems including (but not limited to) AMPS, PCS, DECT, IS-95, IS-136, 802.11, CDPD and GSM.

At +5 V or -5 V bias, typical output power at 1 dB compression is 3 watts. 1 dB output power over 4 watts and IP3 over +55 dBm may be achieved with higher control voltages.

Electrical Specifications at $\mathrm{Ta}=25 \mathrm{C}$

Symbol	Parameters \& Test Conditions: Zo = $\mathbf{5 0}$ ohms $\mathbf{v}=+\mathbf{5}$ or $\mathbf{- 5 V}$		Units	Min.	Typ.	Max.
Ins	Insertion Loss	$\begin{aligned} & \mathrm{f}=0.05-1.0 \mathrm{GHz} \\ & \mathrm{f}=1.00-2.0 \mathrm{GHz} \\ & \mathrm{f}=2.00-4.00 \mathrm{GHz} \end{aligned}$	dB dB dB		$\begin{aligned} & 0.9 \\ & 1.2 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.5 \end{aligned}$
Isol	Isolation	$\begin{aligned} & \mathrm{f}=0.05-1.0 \mathrm{GHz} \\ & \mathrm{f}=1.00-2.0 \mathrm{GHz} \\ & \mathrm{f}=2.00-4.00 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 24 \\ & 18 \end{aligned}$	$\begin{aligned} & 28 \\ & 22 \\ & 18 \end{aligned}$	
VSWR on	Input \& Output VSWR (on port)	$\begin{aligned} & \mathrm{f}=0.05-2.0 \mathrm{GHz} \\ & \mathrm{f}=2.00-4.0 \mathrm{GHz} \end{aligned}$			$\begin{aligned} & 1.2 \\ & 1.5 \end{aligned}$	
VSWR off	Input \& Output VSWR (off port)	$\begin{aligned} & \mathrm{f}=0.05-2.0 \mathrm{GHz} \\ & \mathrm{f}=2.00-4.0 \mathrm{GHz} \end{aligned}$			$\begin{aligned} & 1.2 \\ & 1.5 \end{aligned}$	
$\mathrm{P}_{1 \mathrm{~dB}}$	Output Power @ 2.0 GHz at 1 dB Compression	$\begin{aligned} & V=+8 V \text { or }-8 V \\ & V=+5 V \text { or }-5 V \\ & V=+3 V \text { or }-3 V \end{aligned}$	dB dB dB		$\begin{aligned} & +36 \\ & +34 \\ & +31 \\ & \hline \end{aligned}$	
TO IP	Third Order Intercept	$\begin{aligned} & \mathrm{V}=+8 \mathrm{~V} \text { or }-8 \mathrm{~V} \\ & \mathrm{~V}=+5 \mathrm{~V} \text { or }-5 \mathrm{~V} \\ & \mathrm{~V}=+3 \mathrm{~V} \text { or }-3 \mathrm{~V} \end{aligned}$	dB dB dB		$\begin{aligned} & +55 \\ & +53 \\ & +50 \end{aligned}$	
ld	Device Current		uA		40	
Isw	Switching Speed 10% to 90% or 90% to 10%		nsec		10	

[^0] Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved.

Truth Table

$\mathbf{V d d}$ (note 1)	$\mathbf{V 1 \text { (note 2) }}$	$\mathbf{V 2}$ (note 2)	J1-J2	J1-J3
0	0	-V	Low Loss	Isolation (Hi-Z)
0	-V	0	Isolation (Hi-Z)	Low Loss
+V (note 3)	0	+V	Isolation (Hi-Z)	Low Loss
+V (note 3)	+V	0	Low Loss	Isolation (Hi-Z)

Note 1: The "Vdd" pin should be permanently connected to the most positive control voltage. If using positive ($0 \mathrm{~V} / 5 \mathrm{~V}$) control signals, $\mathrm{Vdd}=5 \mathrm{~V}$. If using negative $(-5 \mathrm{~V} / 0 \mathrm{~V})$ control voltages, $\mathrm{Vdd}=0 \mathrm{~V}$. Note 2: The differential control voltage ($\mathrm{v}=|\mathrm{V} 1-\mathrm{V} 2|$) may be from 3 V to 8 V in magnitude.
Note 3: Decouple "Vdd" to a good RF ground, and use DC blocking capacitors on all RF pins (J1, J2, \& J3).

Switch Schematic

Caution:

Appropriate precautions in handling, packaging and testing devices must be observed.

Note 1: The switch state shown is when V1 is 3 v to 8 v greater than V 2.

Pin Out		
Pin	Function	Description
1	GND	Ground
2	V1	Differential Control 1
3	J1	RFin
4	V2	Differential Control 2
5	J3	RFout 2
6	Vdd	Bias Control
7	GND	Ground
8	J2	RFout 1

Pin numbers shown for reference only, not marked on part

On Port Input/Output VSWR vs. Frequency

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions.
Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems.
Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved.

[^0]: The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions.
 Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford

